
Tutorial of the Awesome Dirty Do Checksum Checker V3

How To Fix the “104-Unsupported wireless network device detected. System Halted. Remove device and restart” Error in HP Compaq Notebooks, and run it with your OWN miniPCI Wireless Card?In V3 of the ADDCC there is a fully implemented Decompresser-Routine. No separate executables are needed anymore. A Source with the principal LOOP and a Pseudo-Code explanation is included. Study it on the last sites of this document.
Knowledge you need:

– the Whitelist
– your new own PCI\VEN ID's
– some locations with ASCII-String to fix the Checksum-Error
– HOW TO Recovering the BIOS when your HP Notebook wont boot after BIOS flash

Software you need:

– Awesome Dirty Do Checksum Checker v3 (ADDCC)
– .NET FX 3.5 for the ADDCC
– Hexeditor: Hxd, or something like this
– Rompaq for flashing your BIOS in real DOS mode (recommended)verify the BIOS-File checksum BEFORE flashingAlternative:
– a patched HPQFlash for flashing your BIOS in Windows(not recommended) NO checksum verifyOptional:
– Cabpack for compressing your Rom.bin into Rom.cab
– BootDisk 2 BootStick
– Virtual Floppy Drive (VFD)
– 7zip or something like this

Page 1 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

HOW TO Recovering the BIOS

Search in the INTERNET with the Words “Maintenance and Service Guide” , “Recovering the
BIOS” and your Notebook Model. Than hopefully you find a HP .pdf with the explanation of the
Recovering Procedure for Notebook. Sometimes there is no hint inside, but the Procedure works
also, in example nw8440. The Following description is copied from the
 Maintenance and Service Guide HP Compaq nc4200 Notebook PC
Document Part Number: 444624-002 April 2007

Recovering the BIOS
The BIOS recovery procedure requires a ✎ USB diskette drive and a formatted diskette.

The BIOS can be recovered if the flash memory is corrupted. Flash memory corruption can occur if
the notebook powers down while the BIOS is being updated. When the notebook is turned on, the
boot block portion of the flash memory performs an integrity check on the rest of the BIOS
image and enters recovery mode if the image is corrupt. BIOS recovery can be forced on a non-
functioning notebook by turning on the notebook while pressing and holding the Windows
logo key + B on the nonfunctioning notebook keyboard until the caps lock light blinks.
To recover the BIOS:
1. If the nonfunctioning notebook is docked in an optional docking device, undock the notebook.
2. Attach the USB diskette drive directly to a USB port on the nonfunctioning notebook. (USB hubs
are not supported for BIOS recovery).
3. Insert the correct ROMPaq diskette for the product being updated. The BIOS image file must be
located in the root directory of the diskette and must be in contiguous sectors. The easiest way to
ensure this is to visit http://www.hp.com, download the Softpaq, and let the Softpaq create the
ROMPaq diskette.
4. Press and hold the Windows logo key + B on the notebook keyboard (do not use an external
keyboard) and turn on the notebook and wait for the caps lock light to start blinking.
5. Release the Windows logo key + B. The BIOS recovery procedure takes approximately one
minute to read the image from the diskette, and then an additional 15 seconds to program the image
into flash memory. The notebook restarts when the BIOS recovery procedure is complete. Do not
attempt to turn off the notebook after starting a recovery. If the BIOS recovery procedure stalls, the
caps lock light will begin blinking. This situation can arise if the diskette is corrupt or the incorrect
ROMPaq is used. If the notebook does not restart after approximately 3 minutes, press and hold
the power button, or slide and hold the power switch, for at least 5 seconds to force the notebook to
turn itself off. Then repeat the BIOS recovery procedure.

Another way to test the Recovering Procedure is to run it on your laptop without a fail and without
any USB drive plugged. Hold down the Keys and start the engine, if the CAPS-LOCK LED blink
alternative the Recovering Procedure works principal on your notebook. In my case, the NC4200
case, they wrote “hold the Windows logo key + B” but it works with the four arrow-keys too. A
normal USB stick wont work, maybe a special USB stick with a controller that can emulate a
Hardware Floppy likes the HP USB FLOPPY DRIVE KEY or some old JETFLASH or some new
Netac Minisafe Models. You have to change/modify the USB_DEVICE_DESCRIPTOR.
http://www.gizmodo.de/2008/10/26/usb-stick-kann-auch-floppy-disk.html
http://www.rm.com/Support/TechnicalArticle.asp?cref=TEC134761&nav=0

Page 2 from 18

http://www.gizmodo.de/2008/10/26/usb-stick-kann-auch-floppy-disk.html
http://www.rm.com/Support/TechnicalArticle.asp?cref=TEC134761&nav=0

Tutorial of the Awesome Dirty Do Checksum Checker V3

Purchasing the basic BIOS File from the HP Archive:

– extract anyway the original BIOS binary file from the HP archive(I prefer the DOS-Floppy-Image and mount it with VFD)
– you will get a file that looks like that

– 68DTH.BIN, 68TT2.BIN, 68BDD.BIN, 68YAF.BIN, 68YGU.BIN, 68BAS.BIN, ROM.BIN …
First Start the ADDCC will select a necessary tools

– a Hex-Editor

Load the original BIOS file and create automatically a patched copy for your modifications.

Page 3 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Decompress the BIOS
The Decompress-Code will extract both known HP Compaq Headers. It doesn't matter if there some
FF's in the BIOS File or not. The decompresses will automatically detect this and give a separate FF
Fill bytes Block out. After pressing the Decompress-Button there will be pop up the hex editor with
the second POST Bios-Block that includes the decompressed Whitelist. After correct
decompression the Search in … DeCompressed Whitelist Function will be enabled and the
decompressed BIOS-Blocks could be found in the directory.

Page 4 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Finding the Whitelist:

After decompression you have two options to find your Whitelist. In some Models the End of the Whitelist can be found with search string “PSQRVW” in the second POST Block. 00021000.dec. The first result is the end of the Whitelist. The second option is the classical, with searching for a PCI\VEN ID. This function is available in both Whitelists.
– Insert a PCI\VEN ID from there you believe they could be completeor only a part on the Whitelist
– Choose a file, I prefer the patched BIOS
– after “Convert” the “Find Whitelist” Button will be activate if there is an BIOS Notation entry

Page 5 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

If “PSQRVW” could not be found, the ADDCC will try to find it with the PCI\VEN ID's.
If the “PSQRVW” is found, the ADDCC will give a HEX offset of the end from the Whitelist in the second POST Block. In example 68DTH.bin
In Hex Editor goto Offset 0x3705 and then you will find with the method of “sharp seeing” the complete decompressed Whitelist.

The decompressed files from the BIOS:01_00060000_patched_68BDD.BIN.dec 11_00160000_patched_68BDD.BIN.dec02_00020000_patched_68BDD.BIN.dec 12_00090000_patched_68BDD.BIN.bmp03_00020100_patched_68BDD.BIN.dec 13_00094000_patched_68BDD.BIN.bmp04_000F0000_patched_68BDD.BIN.dec 14_00096000_patched_68BDD.BIN.bmp05_00068000_patched_68BDD.BIN.dec 15_00098000_patched_68BDD.BIN.bmp06_00040000_patched_68BDD.BIN.dec 16_00100000_patched_68BDD.BIN.dec07_00010100_patched_68BDD.BIN.dec 17_00140000_patched_68BDD.BIN.dec08_000C0000_patched_68BDD.BIN.dec 18_00150000_patched_68BDD.BIN.dec09_00018000_patched_68BDD.BIN.dec 19_FFF9B88D_ROMBLOCK_patched_68BDD.BIN.bin10_000E0000_patched_68BDD.BIN.dec

Page 6 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Whitelist finetuning in compressed BIOS:

– with a complete entry,the first, from decompressed Whitelist is it so much easierto find the Whitelist in the compressed BIOS. In this case by searching manual with“86 80 20” “8680204286800127”→

– the position bye shifting is with respect to four byte order for a correct checksum fixing
– the Whitelist is found, the position is good for patching it with another PCI\VEN ID

– this ID is found completely

Page 7 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Change the PCI\VEN ID with your Own new PCI\VEN ID's:

– after OK the Original BIOS ID string is filled with the 12 Byte stringfrom above
– insert your OWN BIOS Byte String ID's end refill it with the redundant bytes and the “BF”
– PCI\VEN_168C&DEV_001B&SUBSYS_E9011458
– 8C161B00581401E9
– a mouse-hover over the “checksum Differences” will calculate thedifferences caused from your changes
– write and change it with “change in file”

– after the change, the checksum will be wrong, now its time to fix it and check Whitelist for the new ID

Page 8 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Fix the Checksum:

– normally you can use another PCI\VEN ID from the compressed Whitelist to correct the checksum
– in some case, there is only one PCI\VEN Entry that you already used for the change. Than use an Ascii string in your compressed00020100.dec that don't need, example “Wake up on LAN”.
Fix it with another PCI\VEN ID:

– Open the “patched_68BDD.BIN.pat” with Hex-Editor and search for your BIOS ID Byte String

– you can use so many bytes after your own BIOS ID's
– in this case to fix the checksum is very easy

Page 9 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

– use the bytes 3C10C0FF12868020 to correct it with the checksum-differences -6C
05 -86 98

– yes for changing it in your patched BIOS-File and the job is done!
– yes for changing the last different in your patched BIOS-File
– you can see from the step before that there only the first byteis not fixed. After this step, all bytes will be fixed

Page 10 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Verify that the decompressed Whitelist is correct:

– Open with Hex the original and the patched “00020100.dec”
– compare the both Whitelists

– on the first look its seems to be good, they are only differences on the Whitelist.
– The Positions of the changed PCE\VEN ID'sare exactly the same
– The Two-File-Compare-Function from the Hex Editor will confirm the result

Fix it with an Ascii-String:

– Search and find an Ascii-String with in the decompressed “00020100.dec”

– Well done, there is an Ascii String in it, so lets find them in thecompressed Whitelist

– In this case too, we need two steps to correct the checksum
– 1. use the bytes 426F6F7457616B65 to correct it with the modified checksum-differences -8B 3E C4 43

Page 11 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

– yes for changing it in your patched BIOS-File

Page 12 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Verify that the decompressed Whitelist is correct:

– Open with Hex the original and the patched “00020100.dec”compare the both Whitelists

– on the first look its seems to be good, they are onlydifferences on the Whitelist.
– The Positions of the changed PCE\VEN ID's are exactly the same
– But lets have a look at the Ascii String

– It looks like only “Boot” and “Wake” are changed
– The Two-File-Compare-Function from the Hex Editor will show, that all “Boot” String's in the “00020100.dec” are changed to “.‡ÏŽ”
– so the BIOS will boot, but some “Boot” Strings will be written in Wingdings...

Page 13 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

Flashing in DOS:Rename the 68BDD_Patched.BIN into 68BDD.BIN and flash it with the original rompaq.exe. Reportedly some rompaq.exe is only flashing the bios file, if the checksum is fixed. It checks the checksum BEFORE flashing and abort if the checksum is invalid. sp34752.exe ist a Biosfile from NX9420.
Flashing in Windows:Patch the HPQFlash.exe with the ADDCC PatchButton. Rename the 68BDD_Patched.BIN into ROM.BIN. Delete the Rom.sig, its not needed anymore. Pack the ROM.BIN in ROM.CAB. In example with Cabpack.

Page 14 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

The Source Code of the Decompresser Routine:

The Header Struct:The HP Compaq Bios's have two known Header Struct's. (Dez. 2009) The Table below shows the differences.Header ID 1 Body4 Bytes 3 x 4 Bytes, each 4 Byte in little endianID and Control unpacked_size packed_size target_addressHeader ID 1 ("00 10 01 00" or "00 10 00 00")unknown_00 Headersize more_blocks unknown_03Must be 0x00 Must be 0x10 (16 Dec) 0x01 True, 0x00 False Must be 0x00
Headersize: 0x10 in Hex, 16 in Decimal. Means the byte count is 16, and the first Instruction Byte
of the compressed data is the 17.

more_blocks: If this Byte is “True” (0x01) there is a next part with a header to decompress. If its
“False” (0x00), this is the LAST part to decompress. After this part there is no decompressed data,
maybe “normal” uncompressed bytes. Like the Bootblock or some other ROM Information.

Header ID 2 Body Extension4 Bytes 3 x 4 Bytes, each 4 Byte in little endian 4 Byes (Ascii)ID and Control unpacked_size packed_size target_address Part DescriptionHeader ID 2 ("01 00 14 01" or "01 00 14 00")unknown_00 unknown_01 Headersize more_blocksMust be 0x01 Must be 0x00 Must be 0x14 (20 Dec) 0x01 True, 0x00 False
Headersize: 0x14 in Hex, 20 in Decimal. Means the byte count is 20, and the first Instruction Byte
of the compressed data is the 21. The 4 Bytes on 17,18,19 and 20 are Ascii strings. Like “POST”,
“MESS”, or “HPLO”.

more_blocks: If this Byte is “True” (0x01) there is a next part with a header to decompress. If its
“False” (0x00) at the first time, it means there two more parts to decompress left. Than it follow one
part with “True” (0x01) and than it follow the really last header with “False” (0x00). After this part
there is no decompressed data, maybe “normal” uncompressed bytes. Like the Bootblock or some
other ROM Information.

Page 15 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

The compressed data Struct:The decompressed data struct is really simple. At the first time its starts with instruction byte, followed by minimum eight bytes data and than followed the next instruction byte. Generally every Instruction Byte hast EIGHT operations. In depending on the instruction byte there are two bytes for the Wordbook pointer and the Wordbook-Loop-Counter. During the decompression procedure it will produce a Wordbook. Every Byte to wrote in the target-file will be written at the end of the wordbook. Every byte that is read from any pointer in the Wordbook, will be written too, at the end of the wordbook. And so the wordbook rise continuously till unpacked size is reached. The tables below will show some example.Instruction Byte Compressed data Instruction Byte Compressed data Repeat...Example 1. The FF's are the instruction bytes. Between the data.FF 12 01 2C 01 75 01 98 01 FF AA 01 D1 01 68 02 7F 02 FF C2 02 05 03 3D 03 74 03 FF FF 12 01 2C 01 75 01 98 01 FF AA 01 D1 01 68 02 7F 02 FF C2 02 05 03 3D 03 74 03 FF
Example 2. The FF's and FA are the instruction bytes. Between the data.FF 20 64 69 73 6B 20 6F 72 FA 63 12 65 51 11 0D 0A 72 65 70 FF FF 20 64 69 73 6B 20 6F 72 FA 63 12 65 51 11 0D 0A 72 65 70 FF

Instruction bytes:
How to interpret the instruction byte?! That's easy. FF in Hex is in Binary: 1111 1111. MSB …
LSB. That means is it a “one”, copy the next Byte in the Wordbook. Is it a “zero” take the next two
bytes REVERSE and build a Wordbook read Pointer and a Loop-Counter. Copy the Loop-Counter
bytes at the end of the Wordbook. The Loop-Counter has an Offset from three. In both headers. That
means, is there a “zero” and it starts a Wordbook operation, it copies minimum 3 bytes from the
Wordbook at the end of the wordbook.FF (MSB) 1111 1111 (LSB)FA (MSB) 1111 1010 (LSB)

Wordbook (XX for unknown bytes from the three unknown Nibbles Wordbook Pointer)20 64 69 73 6B 20 6F 72 XX XX XX XX XX XX 65 XX XX XX XX 0D 0A 72 65 70 __
Page 16 from 18

FF FA
(LSB)1 20 (LSB)0 6312 => 1263 126 (3+3)=6

1 64 1 65
1 69 0 5111=> 1151 115 (1+3)=4
1 73 1 0D
1 6B 1 0A
1 20 1 72
1 6F 1 65

(MSB)1 72 (MSB)1 70

Reverse Wordbook Pointer Loop-Counter

Tutorial of the Awesome Dirty Do Checksum Checker V3

Wordbook Pointer:
The building and interpreting of the Wordbook Pointer is the only really difference between the two
header and the two decompression routines.
 WordBook_byte_read_ptr = "&H" & Mid(WordBook_instruction_String, 1, 3)
 WordBook_Loop_Counter = ("&H" & Mid(WordBook_instruction_String, 4, 1)) + 3

For Header ID 1 there is an fix offset to add with the three Nibble's. Add the value 0x1012 to the
three Nibbles and subtract 0x1000 until the Wordbook Read Pointer is smaller than the Wordbook
Write Pointer.

' for Header 1
 If header_ID = 1 Then
 WordBook_byte_read_ptr += "&H" & "1012"
 Do Until WordBook_byte_read_ptr <= WordBook_Write_Counter
 WordBook_byte_read_ptr -= "&H" & "1000"
 Loop
 End If
For Header ID 2 the Wordbook Read Pointer is equal the Wordbook Write Pointer subtract the three
Nibbles.

' for Header 2
 If header_ID = 2 Then
 WordBook_byte_read_ptr = WordBook_Write_Counter - WordBook_byte_read_ptr
 End If

unpacked_size, packed_size, target_address:
These names are self-explanatory.

Page 17 from 18

Tutorial of the Awesome Dirty Do Checksum Checker V3

The whole decompresser Routine for both Headers:
The following Source Code is the same Loop that I' am use in the new ADDCC V3. Two things I
have removed. Before, the declaration of the variables. After it, the write into a file procedures.

Do Until unpacked_size_Counter = 0
 If instruction_Bits = String.Empty Then
 instruction_Bits = Convert.ToString(complete_bios(source_byte_read_ptr) + 256, 2)
 instruction_Bits = Mid(instruction_Bits, 2)
 source_byte_read_ptr += 1
 packed_size_Counter -= 1
 End If
 For i = instruction_Bits.Length - 1 To 0 Step -1
 If instruction_Bits(i) = "0" Then

' copy from WordBook
 WordBook_instruction_String = String.Format("{0:X2}", complete_bios(source_byte_read_ptr + 1)) & _
 String.Format("{0:X2}", complete_bios(source_byte_read_ptr))
 WordBook_byte_read_ptr = "&H" & Mid(WordBook_instruction_String, 1, 3)
 WordBook_Loop_Counter = ("&H" & Mid(WordBook_instruction_String, 4, 1)) + 3

' for Header 1
 If header_ID = 1 Then
 WordBook_byte_read_ptr += "&H" & "1012"
 Do Until WordBook_byte_read_ptr <= WordBook_Write_Counter
 WordBook_byte_read_ptr -= "&H" & "1000"
 Loop
 End If

' for Header 2
 If header_ID = 2 Then
 WordBook_byte_read_ptr = WordBook_Write_Counter - WordBook_byte_read_ptr
 End If
 source_byte_read_ptr += 2 ' two bytes read, two times INC
 End If

 For k = 1 To WordBook_Loop_Counter
 If WordBook_Loop_Counter >= 3 Then

' Read one byte from WordBook-array, INC WordBook_byte_read_ptr
 destination_write_byte = WordBook(WordBook_byte_read_ptr)
 WordBook_byte_read_ptr += 1
 Else

' Read one byte from original complete_bios-array, INC WordBook_byte_read_ptr
 destination_write_byte = complete_bios(source_byte_read_ptr)
 source_byte_read_ptr += 1
 End If

' write the same byte byte in WordBook-array, INC WordBook_Write_ptr
 WordBook(WordBook_Write_Counter) = destination_write_byte
 WordBook_Write_Counter += 1
 unpacked_size_Counter -= 1
 If unpacked_size_Counter = 0 Or WordBook_Write_Counter = unpacked_size Then
 Exit Do
 End If
 Next k
 WordBook_Loop_Counter = 1
 Next i
 instruction_Bits = String.Empty
Loop

Page 18 from 18

